Q1.A positive ion has a charge-to-mass ratio of $2.40 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$. It is held stationary in a vertical electric field. Which line, \mathbf{A} to \mathbf{D}, in the table shows correctly both the strength and the direction of the electric field?

	Electric field strength $/$ $\mathbf{V ~ m}^{-1}$	Direction
A	4.09×10^{-7}	upwards
B	4.09×10^{-7}	downwards
C	2.45×10^{6}	upwards
D	2.45×10^{6}	downwards

Q2.What are the numbers of hadrons, baryons and mesons in an atom of ${ }^{7} 3 \mathrm{Li}$?

	hadrons	baryons	mesons	
A	7	3	3	\square
B	7	4	4	\square
C	7	7	0	\square
D	10	7	0	\square

(Total 1 mark)

Page 2

Q3.Electron capture can be represented by the following equation.

$$
p+e^{-} \rightarrow X+Y
$$

Which row correctly identifies \mathbf{X} and \mathbf{Y} ?

	\mathbf{X}	\mathbf{Y}	
\mathbf{A}	p	K^{-}	\square
\mathbf{B}	e^{-}	e^{+}	\square
\mathbf{C}	n	V_{e}	\square
\mathbf{D}	n	π^{0}	\square

Q4.A calcium ion is formed by removing two electrons from an atom of charge of the calcium ion?

A $\quad 3.2 \times 10^{-19} \mathrm{Ckg}^{-1}$

B $\quad 2.9 \times 10^{-18} \mathrm{C} \mathrm{kg}^{-1}$ \square

C $\quad 4.8 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$ \square

D $\quad 4.8 \times 10^{7} \mathrm{Ckg}^{-1}$

(Total 1 mark)

Q5.Which of the following is not true?

A Each meson consists of a single quark and a single antiquark. \square

B Each baryon consists of three quarks.
C The magnitude of the charge on every quark is $\frac{1}{3}$
D A particle consisting of a single quark has not been observed.

(Total 1 mark)

Q6.A light source emits light which is a mixture of two wavelength, λ_{1} and λ_{2}. When the light is incident on a diffraction grating it is found that the fifth order of light of wavelength λ_{1} occurs at the same angle as the fourth order for light of wavelength λ_{2}. If λ_{1} is 480 nm what is λ_{2} ?

A $\quad 400 \mathrm{~nm}$ \square

B $\quad 480 \mathrm{~nm}$

C 600 nm \square

D $\quad 750 \mathrm{~nm}$

(Total 1 mark)

Q7.The nucleus of ${ }_{4}^{9} \mathrm{Be}$ captures a proton and emits an α particle. What is the product nucleus?
A $\quad{ }_{6}^{10} \mathrm{C}$ \square
B $\quad{ }_{3}^{7} \mathrm{Li} \quad \square$
C ${ }_{3}^{6} \mathrm{Li}$

D $\quad{ }_{2}^{6} \mathrm{He} \quad \bigcirc$
(Total 1 mark)

Q8. When comparing X-rays with UV radiation, which statement is correct?

A X-rays have a lower frequency.

B \quad X-rays travel faster in a vacuum.

C X-rays do not show diffraction and interference effects.

D Using the same element, photoelectrons emitted using X -rays have the greater maximum kinetic energy.
(Total 1 mark)

Q9.Monochromatic light of wavelength 490 nm falls normally on a diffraction grating that has 6×10^{5} lines per metre. Which one of the following is correct?

A The first order is observed at angle of diffraction of 17°. \square
B The second order is observed at angle of diffraction of 34°.
C The third and higher orders are not produced.

D A grating with more lines per metre could produce more orders.

Page 5

Q10.An electron collides with a neutral atom and ionizes it. Which of the following describes the particles present after the collision?

A An electron and an excited atom.
B An excited atom containing an excess electron.
C Two electrons and a positive ion.

D Two electrons and a neutral atom in the ground state.
(Total 1 mark)

Q11.A radioactive nucleus emits a β - particle then an α particle and finally another β. particle. The final nuclide is

A an isotope of the original element
\bigcirc

B the same element with a different proton number

C a new element of higher proton number

D a new element of lower nucleon number

(Total 1 mark)

Page 6

Q12.Interference maxima produced by a double source are observed at a distance of 1.0 m from the sources. In which one of the following cases are the maxima closest together?

A red light of wavelength 700 nm from sources 4.0 mm apart
B sound waves of wavelength 20 mm from sources 50 mm apart
C blue light of wavelength 450 nm from sources 2.0 mm apart
D surface water waves of wavelength 10 mm from sources 200 mm apart
(Total 1 mark)

Q13.The diagram shows a microwave transmitter T which directs microwaves of wavelength eat two slits S_{1} and S_{2} formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

receiver
at 0

When the receiver is moved to P from O , which is equidistant from S_{1} and S_{2}, the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

A The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=0.5 \lambda$

B The path difference $\mathrm{S}_{1} \mathrm{O}-\mathrm{S}_{2} \mathrm{O}=\boldsymbol{\lambda}$

C The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=0.5 \lambda$

D The path difference $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}=\lambda$
(Total 1 mark)

Q14.

Point sources of sound of the same frequency are placed at S_{1} and S_{2}. When a sound detector is slowly moved along the line PQ, consecutive maxima of sound intensity are detected at W and Y and consecutive minima at X and Z . Which one of the following is a correct expression for the wavelength of the sound?

A $\mathrm{S}_{1} \mathrm{X}-\mathrm{S}_{1} \mathrm{~W}$
B $\quad S_{1} Y-S_{1} X$
C $\mathrm{s}_{1} \mathrm{X}-\mathrm{s}_{2} \mathrm{X}$
D $\mathrm{S}_{1} \mathrm{Y}-\mathrm{S}_{2} \mathrm{Y}$
(Total 1 mark)

Q15.In a Young's double slit interference experiment, monochromatic light placed behind a single slit illuminates two narrow slits and the interference pattern is observed on a screen placed some distance away from the slits. Which one of the following decreases the separation of the fringes?

A increasing the width of the single slit
B decreasing the separation of the double slits
C increasing the distance between the double slits and the screen
D using monochromatic light of higher frequency
(Total 1 mark)

Q16. Interference fringes, produced by monochromatic light, are viewed on a screen placed a distance D from a double slit system with slit separation s. The distance between the centres of two adjacent fringes (the fringe separation) is w. If both s and D are doubled, what will be the new fringe separation?

A $\frac{w}{4}$
B w
C $2 w$
D $4 w$
(Total 1 mark)

Q17.Artificial radioactive nuclides are manufactured by placing naturally-occurring nuclides in a nuclear reactor. They are made radioactive in the reactor as a consequence of bombardment by

A $\quad \alpha$ particles.
B $\quad \beta$ particles.
C protons.
D neutrons.

Q18.

Coherent monochromatic light of wavelength λ emerges from the slits X and Y to form dark fringes at P, Q, R and S in a double slit apparatus. Which one of the following statements is true?

A When the distance D is increased, the separation of the fringes increases.

B When the distance between X and Y is increased, the separation of the fringes increases.
C When the width of the slit T is decreased, the separation of the fringes decreases.
D There is a dark fringe at P because $(\mathrm{YP}-\mathrm{XP})$ is 2λ.

Q19.In a double slit interference arrangement the fringe spacing is w when the wavelength of the radiation is λ, the distance between the double slits is S and the distance between the slits and the plane of the observed fringes is D. In which one of the following cases would the fringe spacing also be w ?

	wave length	distance between slits	distance between slits and fringes
A	2λ	$2 s$	$2 D$
B	2λ	$4 s$	$2 D$
C	2λ	$2 s$	$4 D$
D	4λ	$2 s$	$2 D$

(Total 1 mark)

Q20.

A double slit interference experiment is performed using monochromatic light of wavelength λ. The centre of the observed pattern is a bright fringe. What is the path difference between two waves which interfere to give the third dark fringe from the centre?

A 0.5λ
B $\quad 1.5 \lambda$

C 2.5λ
D $\quad 3.5 \lambda$

Q21.In a Young's double slits interference arrangement the fringe separation is s when the wavelength of the radiation is λ, the slit separation w and the distance between the slits and the plane of the observed fringes D. In which one of the following cases would the fringe separation also be s ?

	wavelength	slit separation	distance between slits and fringes
A	2λ	$2 w$	$2 D$
B	2λ	$4 w$	$2 D$
C	2λ	$2 w$	$4 D$
D	4λ	$2 w$	$2 D$

(Total 1 mark)

Q22.Young's two slit interference pattern with red light of wavelength $7.0 \times 10^{-7} \mathrm{~m}$ gives a fringe separation of 2.0 mm .

What separation, in mm , would be observed at the same place using blue light of wavelength $45 \times 10^{-7} \mathrm{~m}$?

A 0.65
B 1.3
C 2.6
D 3.1

Q23. In a nuclear reaction ${ }_{7}^{14} \mathrm{~N}$ is bombarded by neutrons. This results in the capture of one neutron and the emission of one proton by one nucleus of ${ }_{7}^{14} \mathrm{~N}$. The resulting nucleus is

A ${ }_{7}^{13} \mathrm{~N}$
B $\quad{ }_{6}^{14} \mathrm{C}$
C $\quad{ }_{6}^{12} \mathrm{C}$
D $\quad{ }_{8}^{14} \mathrm{O}$
(Total 1 mark)

Q24.The diagram represents the experimental arrangement used to produce interference fringes in Young's double slit experiment.

The spacing of the fringes on the screen will increase if

A the width of the single slit is increased
B the distance $\mathbf{X Y}$ between the two slits is increased
C a light source of lower frequency is used
D the distance between the single and double slits is decreased

